

открытый урок физики на тему «Сила трения»

Провела учитель физики Рамазанова Кемсер Рамазановна

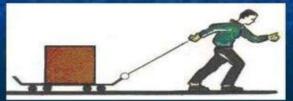
Цели и задачи урока

- сформировать представление учащихся о силе трения, качения и скольжения; показать значение силы трения в жизни человека, быту и технике; научить пользоваться динамометром
- способствовать развитию умений наблюдать, анализировать, обобщать, делать вывод.
- способствовать воспитанию познавательного интереса, толерантности, аккуратности
- научить оформлять результаты исследования с помощью электронных таблиц
- способствовать развитию внимания, логического мышления
- способствовать формированию эстетического вкуса

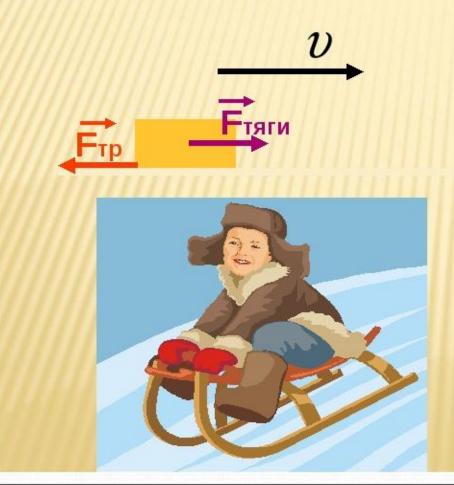
Сила трения:

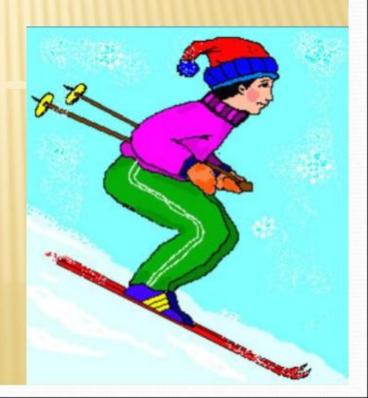
Виды трения

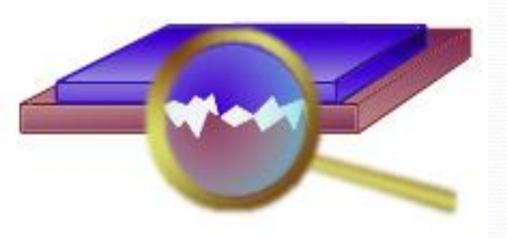
Трение покоя


Трение скольжения

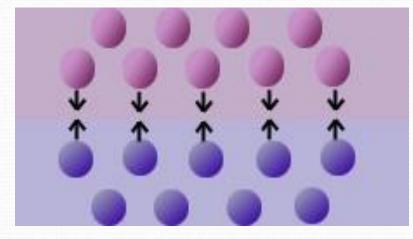
Трение качения


Трение скольжения


возникает при скольжении одного тела по поверхности другого. Например, такое трение возникает при движении саней и лыж по снегу.

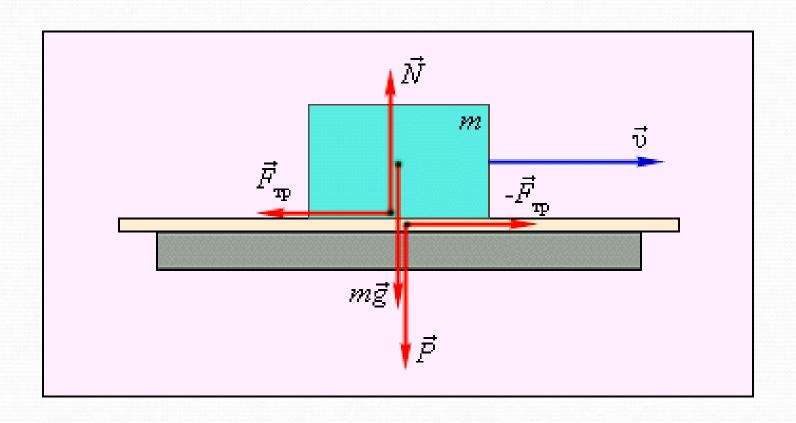

Сила трения скольжения

Сила трения, которая возникает при скольжении одного тела по поверхности другого называется силой трения скольжения.



причина трения

шероховатость поверхностей соприкасающихся тел


Как правило, в большинстве случаев трение обусловлено этой причиной

взаимное притяжение молекул соприкасающихся тел

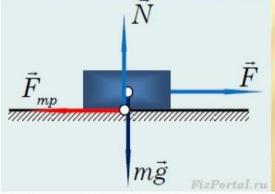
Возникает в случае гладко отшлифованных поверхностей

Сила, возникающая при соприкосновении поверхностей тел и препятствующая их перемещению относительно друг друга, называется силой трения.

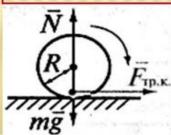
Формула силы трения. Коэффициент трения.

Первая формулировка законов трения принадлежит великому Леонардо (1519 г.), который утверждал, что

сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта. Этот закон был заново открыт через 180 лет Г.Амонтоном, а затем уточнён в работах Ш.Кулона (1781 г.). Амонтон и Кулон ввели понятие коэффициента трения


Шарль

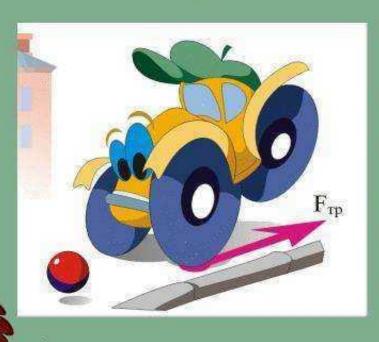
<u>Коэффициент трения</u> — это безразмерная физическая величина, определяющая отношение величины силы трения к силе нормального давления, прижимающей тело к опоре.


Коэффициент трения характеризует интенсивность взаимодействия поверхностей соприкасающихся тел, которая зависит от материалов соприкасающихся тел и от

качества обработки их поверхностного слоя.

$$F_{mp}=\mu N$$
 \longrightarrow $F_{mp}=\mu N=\mu mg$ $\mu=\frac{F_{mp}}{N}$ $\mu=\frac{F_{mp}}{N}$ $\mu=\frac{F_{mp}}{N}$ $\mu=\frac{F_{mp}}{N}$

Гийом Амонтон


Трущиеся поверхности	Коэффициент трения скольжения
Сталь по льду	0,014
Сталь по стали	0,15-0,18
Дерево по чугуну	0,25-0,5
Дерево по дереву:	
поперек волокон	0,34
вдоль волокон	0,48
Резина по чугуну	0,5-0,8
Целлофан по резине	0,95

Трение качения

тело не скользит, а катится по поверхности другого.

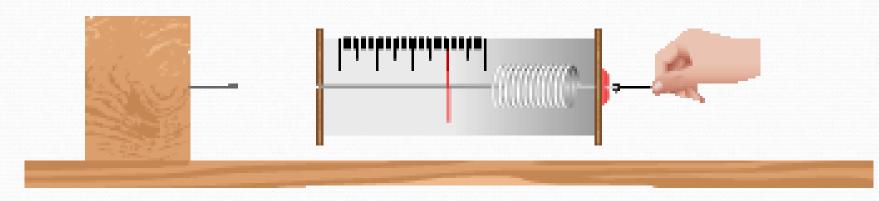
Например: движение колёс вагона, автомобиля, при перекатывании брёвен или бочек по земле.

Сила трения качения

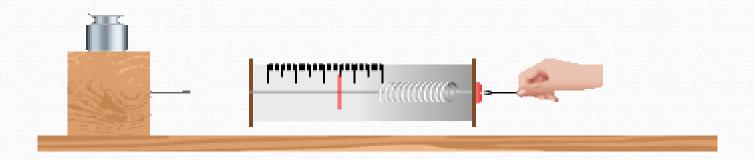
Если тело катится по поверхности другого, то силу возникающую при этом называют силой трения качения

Трение покоя

•сила, существующая между покоящимися друг относительно друга телами



Кошка за Жучку Жучка за внучку Внучка за бабку Бабка за дедку Дедка за репку



Тянут – потянут, вытянуть не могут.

Измерение силы трения

Если равномерно перемещать динамометр, а, соответственно, и прикрепленный к нему брусок вдоль стола, то динамометр покажет силу, действующую на брусок. Т.к. движение равномерное, то сила, приложенная к бруску, по модулю равна силе **трения скольжения**

Чем больше сила, прижимающая тело к поверхности, тем больше возникающая при этом сила трения.

При измерении сила трения качения оказывается меньше силы трения скольжения

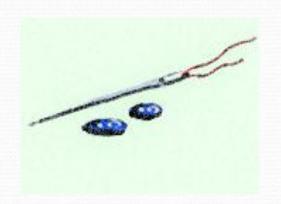
Трение качения

Полезна или вредна сила трения?

Польза Сила трения – движущая и тормозящая сила

Вред Изнашивает поверхность, препятствует движению

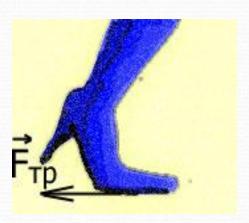
Трение бывает не только вредным, но и полезным.


Трение принимает участие там, где мы о нем даже и не подозреваем

• Когда шьём

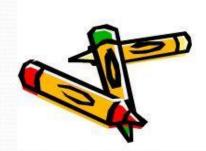
Когда

Когда ходим


завязываем пояс

• Без трения все нитки выскользали бы из ткани

Без трения все узлы бы развязались


Без трения нельзя бы было ступить и шагу да и ,вообще, стоять.

А если бы трения вообще не было?

"Вообразим, что трение может быть устранено совершенно, тогда никакое тело, будь оно величиной с каменную глыбу или мало, как песчинка, никогда не удержится одно на другом, все будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля была бы без неровностей, подобно жидкости."

Швейцарский физик Шарль Гийом, лауреат Нобелевской премии

работали! Автобусы

ездили без остановки!

В магазины можно было не ходить, потому что удержать продукты в руке было невозможно, не

Tpehne B Knahn Pactehnň

• Лианы, хмель, вьюны и др. благодаря трению цепляются за находящиеся поблизости опоры, удерживаются на них и тянутся к свету

III. Итог урока

- •Какое явление мы изучили?
- •От чего зависит трение?
- •Какие способы уменьшения и увеличения трения существуют?
- •Зависит ли трение от среды, в которой оно возникает?
- •Какие виды трения существуют вокруг нас?
- •Каковы причины возникновения трения?

